Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Environ Sci Pollut Res Int ; 29(43): 64582-64596, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1803047

ABSTRACT

Baoji is a typical heavy industrial city in northwest China. Its air quality is greatly impacted by the emission from the factories. Elements in fine particulate matter (PM2.5) that are greatly emitted from anthropogenic sources could pose diverse health impacts on humans. In this study, an online AMMS-100 atmospheric heavy metal analyzer was used to quantify 30 elements in PM2.5 under the weak and strong anthropogenic disturbance scenarios before the city lockdown period (from January 9th to 23rd) and the lockdown period (from January 26th to February 9th) due to the outbreak of COVID-19 in 2020. During the lockdown period, the average total concentration of total quantified elements was 3475.0 ng/m3, which was 28% and 33% lower than that of the week and strong anthropogenic disturbance scenarios during the pre-lockdown period. The greatest reductions were found for the elements of chromium (Cr), titanium (Ti), manganese (Mn), and Zinc (Zn), consistent with the industrial structure of Baoji. The mass concentrations of most elements showed obvious reductions when the government post-alerted the industries to reduce the operations and production. Dust, traffic sources, combustion, non-ferrous metal processing, and Ti-related industrial processing that are the contributors of the elements in the pre-lockdown period were apportioned by the positive matrix factorization (PMF) model. Substantial changes in the quantified elements' compositions and sources were found in the lockdown period. Health assessment was conducted and characterized by apportioned sources. The highest non-carcinogenic risk (HQ) was seen for Zn, demonstrating the high emissions from the related industrial activities. The concentration level of arsenic (As) exceeded the incremental lifetime carcinogenic risk (ILCR) in the lockdown period. This could be attributed to the traditional firework activities for the celebration of the Chinese New Year within the lockdown period.


Subject(s)
Air Pollutants , Arsenic , COVID-19 , Metals, Heavy , Air Pollutants/analysis , Anthropogenic Effects , China , Chromium , Communicable Disease Control , Dust/analysis , Environmental Monitoring , Humans , Manganese , Particulate Matter/analysis , Titanium , Zinc
2.
Curr Pharm Biotechnol ; 23(2): 307-315, 2022.
Article in English | MEDLINE | ID: covidwho-1633212

ABSTRACT

Exposure to environmental toxicants such as Arsenic (As) can result in As-induced alterations in immune regulators. Consequently, people who are more prone to viral infections like influenza A or B, H1N1, SARS CoV (Severe Acute Respiratory Syndrome Coronavirus), and SARS CoV2 may develop a susceptibility to immune responses in their lungs because our previous reports delineated the ability of QIAPI 1®, a melanin precursor, to dissociate water molecules with simultaneous therapeutic efficacy against central nervous system (CNS) diseases, retinopathy, and As-induced renal toxicity. Considering the commonalitie of lung pathology of SARS CoV and As-induced toxicity, the aim of this study is to decipher the efficacy of QIAPI 1® against pentavalent As-induced lung toxicity by examining the pulmonary pathology. Hematoxylin & Eosin (H&E) staining was used for ascertaining the lung pathology in Wistar rat models. Animals were divided into 3 groups: control group, group treated with pentavalent As, and a group treated with pentavalent As and QIAPI 1®. There were no significant changes in lung histopathology in the control group as indicated by intact morphology. The As-treated group revealed damage to the histoarchitecture with pulmonary edema, interstitial fibrosis, diffuse alveolar damage, Bronchiolitis obliterans organizing pneumonia (BOOP)-lesions, formation of hyaline membrane, multinucleated giant pneumocytes, atypical pneumocytes, inflammatory cell infiltration, and interstitial edema. The group treated with As and QIAPI 1® significantly associated with mitigated histological signs of lung inflammation induced by Arsenic. Therefore, QIAPI 1® can be recommended as antagonistic to Asinduced lung toxicity. In conclusion, this model could be preferred as a hypothetical model to examine the efficacy of QIAPI 1® in SARS CoV2-induced pulmonary damage. Future studies are warranted to delineate the efficacy of QIAPI 1® against SARS CoV and SARS CoV2 lung pathology.


Subject(s)
Arsenic , COVID-19 , Influenza A Virus, H1N1 Subtype , Animals , Arsenic/toxicity , Humans , Lung , Rats , Rats, Wistar , SARS-CoV-2
3.
Int J Environ Res Public Health ; 18(21)2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1488595

ABSTRACT

The illegal trade of wildlife in SE Asia has been identified as the likely cause of the COVID-19 pandemic. We reviewed 198 papers on the current COVID pandemic in Cambodia, diseases such as avian influenza and Nipah virus, most likely to develop into a new pandemic in Cambodia, and common features of disease that require mitigation. Artisanal goldmining uses pure mercury in the areas where wildlife is smuggled to China. Moreover, 30-40% of Cambodians are zinc deficient. High levels of arsenic in irrigation water (>1000 µg/L) are associated with very low levels of zinc in rice (5 µg/g) and rice is the primary staple food for the region. Brown rice from nine of 15 paddy fields in the arsenic zone of Cambodia had double the new guidelines of 100 µg/kg inorganic arsenic for children's food in the EU and USA. The combination of deficiencies of essential micronutrients like zinc and pervasive presence of arsenic and mercury has the potential to compromise the immunity of many Cambodians. Innovative solutions are suggested to improve micronutrient nutrition. Toxins that suppress the immune system must be better managed to reduce the virulence of pathogens. Cambodia was not likely the source of the COVID-19 but does have problems that could result in a new pandemic.


Subject(s)
Arsenic , COVID-19 , Oryza , Animals , Arsenic/analysis , Cambodia/epidemiology , Child , Humans , Micronutrients , Pandemics , SARS-CoV-2
4.
Int J Environ Res Public Health ; 18(6)2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125544

ABSTRACT

The 2020 COVID-19 pandemic has not only resulted in immense loss of human life, but it also rampaged across the global economy and socio-cultural structure. Worldwide, countries imposed stringent mass quarantine and lockdowns to curb the transmission of the pathogen. While the efficacy of such lockdown is debatable, several reports suggest that the reduced human activities provided an inadvertent benefit by briefly improving air and water quality. India observed a 68-days long, nation-wide, stringent lockdown between 24 March and 31 May 2020. Here, we delineate the impact of the lockdown on groundwater and river sourced drinking water sustainability in the arsenic polluted Ganges river basin of India, which is regarded as one of the largest and most polluted river basins in the world. Using groundwater arsenic measurements from drinking water wells and water quality data from river monitoring stations, we have studied ~700 km stretches of the middle and lower reaches of the As (arsenic)-polluted parts of the river for pre-lockdown (January-March 2020), syn-lockdown (April-May), and post-lockdown periods (June-July). We provide the extent of As pollution-free groundwater vis-à-vis river water and examine alleviation from lockdown as an opportunity for sustainable drinking water sources. The overall decrease of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations and increase of pH suggests a general improvement in Ganges water quality during the lockdown in contrast to pre-and-post lockdown periods, potentially caused by reduced effluent. We also demonstrate that land use (agricultural/industrial) and land cover (urban-periurban/rural) in the vicinity of the river reaches seems to have a strong influence on river pollutants. The observations provide a cautious optimistic scenario for potentially developing sustainable drinking water sources in the arsenic-affected Ganges river basin in the future by using these observations as the basis of proper scientifically prudent, spatially adaptive strategies, and technological interventions.


Subject(s)
Arsenic , COVID-19 , Drinking Water , Water Pollutants, Chemical , Communicable Disease Control , Environmental Monitoring , Humans , India , Pandemics , Rivers , SARS-CoV-2 , Water Pollutants, Chemical/analysis
5.
Food Chem Toxicol ; 146: 111809, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-866691

ABSTRACT

Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.


Subject(s)
Air Pollution/adverse effects , COVID-19/epidemiology , Environmental Exposure/adverse effects , Heavy Metal Poisoning/epidemiology , Metals, Heavy/adverse effects , Smoking/adverse effects , Animals , Arsenic/adverse effects , COVID-19/virology , Cadmium/adverse effects , Heavy Metal Poisoning/etiology , Humans , Lead/adverse effects , Mercury/adverse effects , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/virology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL